1 Определение предельно допустимых значений и характеризующих параметров силового диода

1.1 Условие задачи

При помощи схемы (рисунок 1.1) были произведены замеры средних значений напряжений и токов силового нелавинного диода в прямом и обратном направлениях.

Рисунок 1.1 — Форма напряжения (*a*) и схема (*б*) для получения классификационной BAX силового диода

Результаты замеров приведены в таблице 1.1, в которой обозначено: F(forward) — прямое направление, R(reverse) — обратное направление, G — номер группы студента (1, 2, 3), N — номер студента по журналу деканата.

Таблица 1.1 — Замеренные з	вначения напряжений и токов силового диода

U_F , B	$0,2\cdot G$	$0,4\cdot G$	$0,6\cdot G$	$0,7\cdot G$	$0.8 \cdot G$
I_F , A	5·N/G	20·N/G	60·N/G	160·N/G	300·N/G
U_R , B	5· <i>N</i> · <i>G</i>	10· <i>N</i> · <i>G</i>	15· <i>N</i> · <i>G</i>	20· <i>N</i> · <i>G</i>	25·N·G
I_R , м A	0,06·N	0,07·N	0,08·N	0,09·N	0,1:N

Необходимо:

- 1) составить таблицу замеренных средних значений напряжений и токов силового диода в прямом и обратном направлениях для заданного варианта;
- 2) определить по таблице предельно допустимые значения силового диода: рабочее импульсное обратное напряжение (U_{RWM}), повторяющееся импульсное обратное напряжение (U_{RRM}), класс диода (K), неповторяющееся импульсное обратное напряжение (U_{RSM}), напряжение пробоя ($U_{(BR)}$), максимально допустимый средний прямой ток ($I_{FAV\ m}$); амплитуду максимально допустимого прямого тока (I_{FM});

- 3) построить вольт-амперную характеристику (ВАХ) силового диода в прямом направлении по средним значениям;
- 4) построить ВАХ силового диода в обратном направлении по амплитудным значениям;
- 5) определить по ВАХ диода в прямом и обратном направлениях характеризующие параметры силового диода: пороговое напряжение $(U_{(TO)})$, дифференциальное сопротивление (r_T) , импульсное прямое падение напряжения (U_{FM}) , повторяющийся импульсный обратный ток (I_{RRM}) ;
- 6) определить тепловые значения диода при токе равном $I_{FAV\ m}$: мощность потерь (P_{Fm}) и температуру p-n перехода (при расчетах принять коэффициент формы тока $K_{\Phi} = \sqrt{3}$, температуру окружающей среды $T_a = 25$ °C, тепловое сопротивление «переход–среда» $R_{thia} = 0.5/(N \cdot G)$ °C/Вт);
- 7) дать обозначение силовому диоду в соответствии с конструктивными параметрами, приведенными в таблице 1.2, а также полученными предельно допустимыми значениями и характеризующими параметрами.

Таблица 1.2 — Конструктивные параметры силовых диодов

N	Номер модификации	Конструк- тивное выполнение	Размер шестигран- ника под ключ	Диаметр кор- пуса, мм	N	Номер модификации	Конструк- тивное выполнение	Размер шестигран- ника под ключ	Диаметр кор- пуса, мм
1	1	ШГВ	11		19	1	ШГВ	17	
2	2	ШЖВ	14		20	2	ШЖВ	22	
3	3	T		36	21	3	T		145
4	2	ШГВ	17		22	2	T		120
5	3	T		45	23	3	ШЖВ	27	
6	1	T		54	24	1	T		112
7	3	ШГВ	22		25	3	ШГВ	32	
8	1	ШЖВ	27		26	1	ШЖВ	41	
9	2	T		62	27	2	T		88
10	1	T		78	28	1	ШГВ	41	
11	2	ШЖВ	32		29	2	T		78
12	3	T		88	30	3	T		62
13	2	ШГВ	41		31	2	ШГВ	32	
14	3	ШЖВ	11		32	3	ШЖВ	27	
15	1	T		112	33	1	T		54
16	3	ШГВ	14	_	34	3	T		120
17	1	T	_	120	35	1	ШЖВ	22	
18	2	T	_	145	36	2	T		145

Примечание: ШГВ — штыревое с гибким выводом; ШТВ — штыревое с твердым выводом; Т — таблеточное.

1.2 Пример решения задачи

1.2.1 Составление таблицы исходных данных

Составим таблицу исходных данных и решим задачу для варианта G=2 и N=40.

Таблица 1.3 — Замеренные значения напряжений и токов силового диода

U_F , B	0,4	0,8	1,2	1,4	1,6
I_F , A	100	400	1200	3200	6000
U_R , B	400	800	1200	1600	2000
I_R , мА	2,4	2,8	3,2	3,6	4

Таблица 1.4 — Конструктивные параметры исследуемого силового диода

Номер модификации конструкции	2
Конструктивное выполнение	таблеточное
Диаметр корпуса	112 мм

Перед решением задачи определим, как связаны между собой амплитудные значения токов и напряжений, которые действуют в схеме, и средние значения этих величин, которые приведены в таблице 1.3.

Из математики известно, что среднее значение функции f(t) за какой-либо период равно высоте прямоугольника с основанием T, площадь которого равна площади, ограниченной функцией f(t) и осью абсцисс за этот же период.

Так, среднее значение выпрямленного напряжения численно равно высоте прямоугольника, у которого основание равно периоду повторяемости выпрямленного напряжения, а площадь — площади фигуры, ограниченной кривой выпрямленного напряжения и осью абсцисс за этот же период [1].

При снятии классификационной ВАХ силовых полупроводниковых приборов в схему подается напряжение от однополупериодной схемы выпрямления (рисунок 1.1, а) [2]. Изобразив на рисунке 1.2 мгновенное (u_d) и среднее ($U_{d \text{ CP}}$) значения выпрямленного напряжения, установим связь между амплитудой этого напряжения ($U_{d MAX}$) и его средним значением.

Как следует из рисунка 1.2, период повторяемости выпрямленного напряжения однополупериодной схемы выпрямления составляет 2π . Потому найдем площадь фигуры (S_1) , ограниченной кривой выпрямленного напряжения и осью абсцисс за этот период. Так как на интервале от π до 2π $u_d = 0$, то

$$S_1 = \int_0^{\pi} U_{d MAX} \cdot \sin \Theta d\Theta = U_{d MAX} \left(-\cos \Theta \right) \Big|_0^{\pi} = 2U_{d MAX}. \tag{1.1}$$

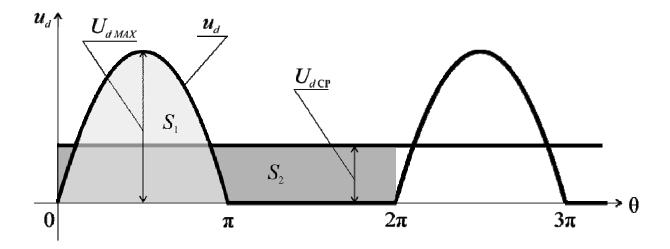


Рисунок 1.2 — Временная диаграмма мгновенного (u_d) и среднего $(U_{d \text{ CP}})$ значений выпрямленного напряжения однополупериодной схемы выпрямления

Очевидно, что площадь прямоугольника (S_2), у которого основание равно 2π , а высота – среднему напряжению, определится как

$$S_2 = U_{d \text{ CP}} \cdot 2\pi. \tag{1.2}$$

Приравняв выражения (1.1) и (1.2), получим

$$U_{dMAX} = \pi \cdot U_{dCP}. \tag{1.3}$$

Аналогичным образом можно установить зависимости и между другими электрическими величинами. Например, если ток изменяется так же, как напряжение на рисунке 1.2, то

$$I_{MAX} = \pi \cdot I_{CP}. \tag{1.4}$$

1.2.2 Определение предельно допустимых значений силового диода

1.2.2.1 Рабочее импульсное обратное напряжение ($U_{\it RWM}$)

Примем, что при проведении испытаний силового диода в обратом направлении в последнем опыте было достигнуто максимальное рабочее напряжение. Согласно данным таблицы 1.3, его среднее значение (U_{RW}) составило 2000 В.

Тогда, в соответствии с выражением (1.3) получим

$$U_{RWM} = \pi \ U_{RW} = \pi \ 2000 = 6283 \ B.$$

1.2.2.2 Повторяющееся импульсное обратное напряжение (U_{RRM})

Согласно [3] $U_{RWM} = 0,67 \cdot U_{RRM}$. Потому

$$U_{RRM} = U_{RWM} / 0,67 = 6283 / 0,67 = 9378 \text{ B}.$$

1.2.2.3 Класс диода (**К**)

В соответствии с [3] — $U_{RRM} = 100 \cdot K$. Значит

$$K = U_{RRM}/100 = 9378/100 = 93,78.$$

Округляя полученное значение в меньшую сторону, получим, что у данного диода 93 класс.

1.2.2.4 Неповторяющееся импульсное обратное напряжение (U_{RSM})

Так как исследуемый диод является нелавинным, то согласно [3]

$$U_{RSM} = 1.16 \cdot U_{RRM} = 1.16.9378 = 10878 \text{ B}.$$

1.2.2.5 Напряжение пробоя ($U_{(BR)}$)

В соответствии с [3]

$$U_{(BR)} = 1.33 \cdot U_{RRM} = 1.33 \cdot 9378 = 12473 \text{ B}.$$

1.2.2.6 Максимально допустимый средний прямой ток (I_{FAVm})

Примем, что при проведении испытаний силового диода в прямом направлении в последнем опыте был достигнут максимально допустимый средний прямой ток. Согласно данным таблицы 1.3

$$I_{FAVm} = 6000 \text{ A}.$$

1.2.2.7 Амплитуда максимально допустимого прямого тока (I_{FM})

Согласно выражению (1.4) получим

$$I_{FM} = \pi \cdot I_{FAVm} = \pi \cdot 6000 = 18850 \text{ A}.$$

Рассчитанные предельно допустимые значения сведем в таблицу 1.5.

Таблица 1.5 — Предельно допустимые значения исследуемого силового диода

U_{RWM} , B	U_{RRM} , B	K	U_{RSM} , B	$U_{(BR)}$, B	I_{FAVm} , A	I_{FM} , A
6283	9378	93	10878	12473	6000	18850

1.2.3 Построение ВАХ силового диода в прямом направлении

Построим прямую ветвь ВАХ ($I_F = f(U_F)$) исследуемого силового диода, используя средние значения напряжений и токов, которые приведены в первых двух строках таблицы 1.3.

Для определения по графику прямой ветви ВАХ импульсного прямого падения напряжения (U_{FM}) на оси ординат необходимо отложить амплитуду максимально допустимого прямого тока (I_{FM}). Поэтому ВАХ после построения по средним значениям таблицы 1.3 (участок $\mathbf{0} - \mathbf{5}$ на рисунке 1.3) придется достраивать (участок $\mathbf{5} - \mathbf{7}$ на рисунке 1.3). Для этого определим максимальные значения величин, которые будем откладывать на осях координат.

Для нахождения максимального значения напряжения на оси абсцисс умножим среднее значение падения напряжения в диоде в прямом направлении при последнем измерении (для варианта G = 2, N = 40 из таблицы 1.3 получаем 1,6 В) на коэффициенты, которые можно выбирать примерно равными 1,6 и 1,8. Из полученного диапазона (1,6 В·1,6 = 2,56 В и 1,6 В·1,8 = 2,88 В) выбираем удобное для откладывания на оси значение (2,6 В) и строим ось напряжений в пределах от 0 до 2,6 В (рисунок 1.3).

Максимальное значение тока на оси ординат получим округлением величины амплитуды максимально допустимого прямого тока (для варианта G=2, N=40 из подпункта 1.2.2.7 получаем $I_{FM}=\pi\cdot 6000=18850$ A) до большего (19000 A), которое удобно откладывать на оси. Проводим ось токов в пределах от 0 до 19000 A (рисунок 1.3).

На построенных осях координат (рисунок 1.3) строим шесть точек: нулевую ($\mathbf{0}$) — в начале оси координат и пять ($\mathbf{1}$, $\mathbf{2}$, $\mathbf{3}$, $\mathbf{4}$, $\mathbf{5}$) — из таблицы 1.3. Далее соединяем эти точки между собой (жирная черная линия на рисунке 1.3).

На прямой ветви ВАХ (рисунок 1.3) показываем значение максимально допустимого среднего прямого тока $I_{FAVm} = 6000$ А.

1.2.4 Построение ВАХ силового диода в обратном направлении

Построим обратную ветвь ВАХ ($I_R = f(U_R)$) исследуемого силового диода, используя амплитудные значения напряжений и токов. Для их получения пересчитаем две последние строки таблицы 1.3 по выражениям (1.3) — (1.4) и сведем полученные значения в таблицу 1.6.

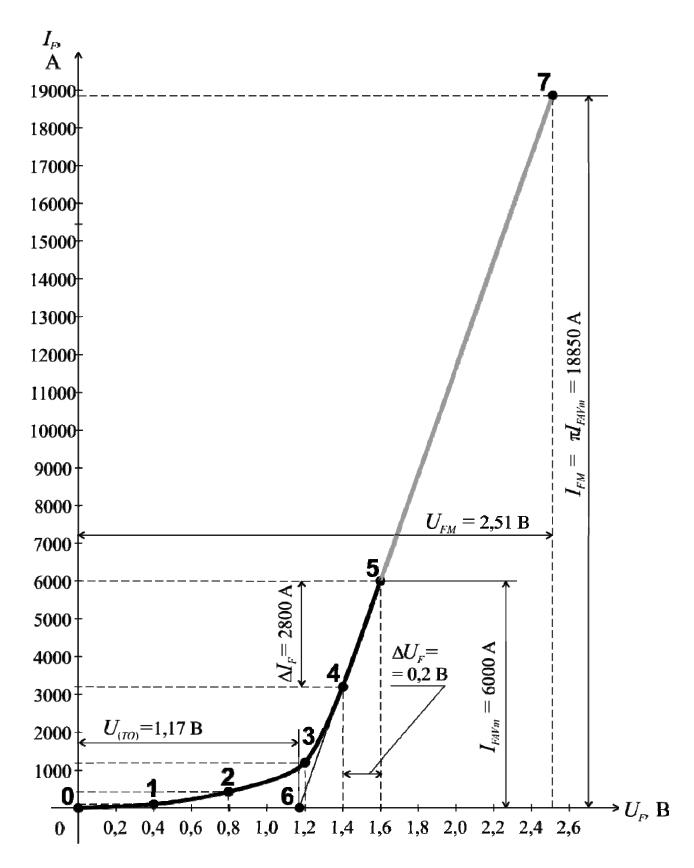


Рисунок 1.3 — ВАХ исследуемого силового диода в прямом направлении

Таблица 1.6 — Амплитудные значения замеренных напряжений и токов силового диода в обратном направлении

U_{RM} , B	1257	2513	3770	5027	6283
I_{RM} , MA	7,540	8,796	10,05	11,31	12,57

Значение напряжения, приведенное в 6-ом столбце таблицы 1.6 (6283 В), является рабочим импульсным обратным напряжением (см. подпункт 1.2.2.1). Кроме него на обратной ветви ВАХ необходимо будет показать повторяющееся и неповторяющееся импульсные обратные напряжения, а также напряжение пробоя исследуемого силового диода. Поэтому ВАХ после построения по данным таблицы 1.6 (участок **0 – 5** на рисунке 1.4) придется достраивать (участок **5 – 7** на рисунке 1.4). Для этого определим максимальные значения величин, которые будем откладывать на осях координат.

Максимальное значение напряжения на оси абсцисс получим округлением величины напряжения пробоя (для варианта G=2, N=40 из подпункта 1.2.2.5 получаем $U_{(BR)}=1,33.6283=12473$ В) до большего (13000 В), которое удобно откладывать на оси. Строим ось напряжений в пределах от 0 до 13000 В (рисунок 1.4).

Максимальное значение тока на оси ординат найдем следующим образом. Умножим амплитуду обратного тока диода при последнем измерении (для варианта G=2, N=40 из таблицы 1.6 получаем 12,57 мА) на коэффициенты, которые можно выбирать примерно равными 1,7 и 2. Из полученного диапазона (12,57 мА · 1,7 = 21,39 мА и 12,57 мА · 2 = 25,14 В) выбираем удобное для откладывания на оси значение (25 мА) и проводим ось токов в пределах от 0 до 25 мА (рисунок 1.4).

На построенных осях координат (рисунок 1.4) откладываем шесть точек: нулевая (**0**) — в начале оси координат и пять (**1, 2, 3, 4, 5**) — из таблицы 1.6. Далее соединяем эти точки между собой (жирная черная линия на рисунке 1.4).

1.2.5 Определение характеризующих параметров силового диода

1.2.5.1 Пороговое напряжение ($U_{(TO)}$)

Для определения порогового напряжения необходимо провести касательную к линейному участку ВАХ силового диода в прямом направлении. Точка пересечения этой касательной с осью напряжений и даст значение $U_{(TO)}$ [3].

На ВАХ исследуемого диода в прямом направлении (рисунок 1.3) линейным участком можно считать участок между т. **4** и т. **5**. Проведем прямую линию через эти две точки до пересечения ее с осью абсцисс. Линия пересечет ось напряжений в точке **6**, которая соответствует величине 1,17 В. Это значение и будет пороговым напряжением исследуемого диода. Покажем это напряжение на рисунке 1.3.

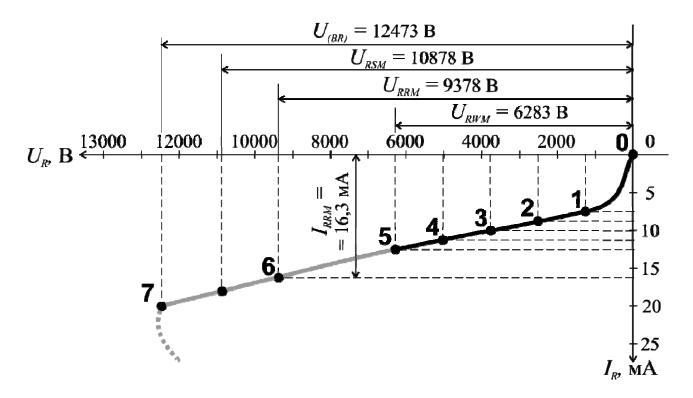


Рисунок 1.4 — ВАХ исследуемого силового диода в обратном направлении

1.2.5.2 Дифференциальное сопротивление (r_T)

Дифференциальное сопротивление определяется делением приращения напряжения на линейном участке BAX силового диода в прямом направлении к соответствующему ему приращению тока [3].

Для расчета воспользуемся значениями напряжений и токов в т. 4 и т. 5

$$r_T = \frac{\Delta U_F}{\Delta I_E} = \frac{1,6-1,4}{6000-3200} = 71,43 \cdot 10^{-6} \text{ Om}.$$

Покажем величины ΔU_F и ΔI_F на рисунке 1.3.

1.2.5.3 Импульсное прямое падение напряжения (U_{FM})

Импульсное прямое падение напряжения возникает в том момент, когда по диоду протекает ток, равный амплитуде максимально допустимого прямого тока I_{FM} [3].

Для получения точки на BAX силового диода в прямом направлении, соответствующей этому току, отложим на оси ординат значение $I_{FM}=18850~\mathrm{A}$ (рисунок 1.3). Из полученной точки проведем перпендикуляр к оси токов до пересечения с BAX диода, которую мы построим, продолжив прямую через т. **4**

и т. **5** (серая линия на рисунке 1.3). В результате получим т. **7**, проекция которой на ось напряжений даст нам величину 2,51 В. Данная величина и будет импульсным прямым падением напряжения исследуемого диода.

Покажем напряжение U_{FM} на рисунке 1.3.

Величину импульсного прямого падения напряжения можно также определить по формуле [4]

$$U_{FM} = U_{(TO)} + I_{FM} r_T = 1.17 + 18850.71.14.10^{-6} = 2.516 \text{ B}.$$

1.2.5.4 Повторяющийся импульсный обратный ток (I_{RRM})

Повторяющийся импульсный обратный ток протекает по диоду в том момент, когда к нему прикладывается повторяющееся импульсное обратное напряжение U_{RRM} [3].

Для получения точки на ВАХ силового диода в обратном направлении (рисунок 1.4), соответствующей этому напряжению, отложим на оси абсцисс значение $U_{RRM} = 9378$ В (рисунок 1.4). Из полученной точки проведем перпендикуляр к оси напряжений до пересечения с ВАХ диода, которую мы построим, продолжив прямую через т. **4** и т. **5** (серая линия на рисунке 1.4). В результате получим т. **6**, проекция которой на ось токов даст нам величину 16,3 мА. Данная величина и будет повторяющимся импульсным обратным током исследуемого диода. Покажем этот ток на рисунке 1.4.

Также покажем на рисунке 1.4 рабочее (U_{RWM}), повторяющееся (U_{RRM}), неповторяющееся (U_{RSM}) импульсные обратные напряжения и напряжение пробоя ($U_{(RR)}$).

Из точки, соответствующей напряжению пробоя, опустим перпендикуляр к оси напряжений до пересечения с ВАХ диода, которую мы построим, продолжив прямую через т. **5** и т. **6** (серая линия на рисунке 1.4). В результате получим т. **7**, которая соответствует пробою силового диода (рисунок 1.4).

Полученные характеризующие параметры сведем в таблицу 1.7.

Таблица 1.7 — Характеризующие параметры исследуемого силового диода

$U_{(TO)}$, B	r_T , Ом	U_{FM} , B	I_{RRM} , м A
1,17	$71,43\cdot10^{-6}$	2,51	16,3

1.2.6 Определение тепловых значений силового диода при токе I_{FAVm}

1.2.6.1 Мощность потерь (P_{Fm})

Известно [4], что тепловую мощность, выделяемую в силовом диоде, можно найти по следующему выражению

$$P_F = U_{(TO)} \cdot I_{FAV} + (I_{FAV} \cdot K_{\Phi})^2 \cdot r_T, \qquad (1.5)$$

где K_{Φ} — коэффициент формы тока, равный отношению действующего значения тока к среднему, по условию задачи равный $\sqrt{3}$.

При протекании по диоду максимально допустимого среднего прямого тока I_{FAVm} выражение (1.5) примет следующий вид

$$P_{Fm} = U_{(TO)} \cdot I_{FAVm} + (I_{FAVm} K_{\Phi})^{2} \cdot r_{T} = 1,17.6000 + (6000 \cdot \sqrt{3})^{2} \cdot 71,42 \cdot 10^{-6} = 14734 \text{ Bt.}$$

1.2.6.2 Температура p-n перехода (T_{im})

Известно [4], что температуру p-n перехода диода можно найти по следующему выражению

$$T_i = T_a + P_F \cdot R_{th\,ia}, \qquad (1.6)$$

где T_a — температура окружающей среды, по условию задачи равна 25°С;

 $R_{th\,ja}$ — тепловое сопротивление «переход-корпус», по условию задачи равное $0.5/(N\cdot G)$ °C/BT.

При протекании по диоду максимально допустимого среднего прямого тока I_{FAVm} выражение (1.6) примет следующий вид:

$$T_{jm} = T_a + P_{Fm} \cdot R_{th ja} = 25 + 14737 \cdot 0,00625 = 117,1 \, ^{\circ}\text{C}.$$

Рассчитанные тепловые параметры сведем в таблицу 1.8.

Таблица 1.8 — Тепловые значения исследуемого силового диода

P_F , BT	$R_{th\;ja}$, °C/BT	T_j , °C
14734	0,00625	117,1

1.2.7 Обозначение силового диода

Существующая система обозначений силовых диодов приведена в [2]. Выполним в соответствии с ней обозначение исследуемого диода.

Таблица 1.9 —	Исходные данные для обозначения силового диода
---------------	--

Номер	Параметр	Значение	Коди-
позиции	Параметр	Эначение	ровка
1	Вид	диод	Д
2	Подвид	обычный	нет
3	Номер модификации конструкции	2	2
4	Габариты корпуса	диаметр 112 мм	7
5	Конструктивное обозначение корпуса	таблеточный	3
6	Максимально допустимый средний прямой ток	6000	6000
7	Класс	93	93
8	Импульсное прямое падение напряжения	2,51	2,51

В соответствии с таблицей 1.6 исследуемый диод обозначим следующим образом:

$$\mu 273-6000-93-2,51.$$
 (1.7)

1.3 Оформление результатов расчетов

Отчет по решению данной задачи минимально должен состоять из следующих разделов, которые необходимо располагать на отдельных страницах.

- 1. Титульный лист.
- 2. Исходные данные: таблица 1 (аналогичная таблице 1.3), таблица 2 (аналогичная таблице 1.4) и таблица 3 (аналогичная таблице 1.6).
- 3. Рисунок 1 BAX силового диода в прямом направлении (аналогичный рисунку 1.3)
- 4. Рисунок 2 BAX силового диода в обратном направлении (аналогичный рисунку 1.4).
- 5. Результаты расчета: таблица 4 (аналогичная таблице 1.5), таблица 5 (аналогичная таблице 1.7), и таблица 6 (аналогичная таблице 1.8).
- 6. Обозначение силового диода: таблица 7 (аналогичная таблице 1.9) и само обозначение (1.7).
- 7. Выводы и предложения.